Embedded Success

Dr.-Ing. Jobst Richert · Section Manager SW Development dSPACE GmbH · Technologiepark 25 · 33100 Paderborn automotive testing expo · 6th of may 2008

Content

- ECU Diagnostics Some Basics
- Automated Testing of ECU Diagnostics using HIL
- ECU Diagnostics as an Auxiliary Means in HIL
- Applying ASAM Diagnostics Standards in HIL
- Practical Problems
- Solution Approaches
- Summary and Outlook

Role of ECU Diagnostics

- Reading out Failure Memory
- Clearing Failure Memory
- Reading Measurement Values
- Testing of Actuators
- Flashing of new Software
- Coding of Variants
- Identification of assembled components
- Determination degree of damage and abrasion
- Activation of ECU internal test routines

Importance and Complexity of ECU Diagnostics

Diagnostics in Motronic-Systems covers ...

- 40 % of Calibration Parameters
- 40 % of Functions
- 40 % of Lines of Codes
- 40-50 % of Processor Runtime

Source: KLEE, P.; KNIRSCH, M.; WILLIMOWSKI, M.: Herausforderungen der Diagnoseentwicklung in der Motorsteuerung, in: Onboard-Diagnose – Status der Gesetzgebung und Auswirkungen auf die Fahrzeugentwicklung, expert-Verlag, Renningen, 2005

Percentage of ECU Diagnostics test ...

Up to 25 % of overall test costs

Automated Testing of ECU Diagnostics using HIL

ECU Diagnostics as an Auxiliary Means in HIL

Scenario 1: Putting into operation or reconstruction of a HIL simulator ...

- Failure Memory Handling (reading and clearing) No failure memory entries == reference operation of HIL
- Coding of relevant variant(s) of System Under Test
- I/O check by activation of actuator test
- Adaptation of assembled sensors / actuators

Scenario 2: Manual or automated ECU diagnostics test ...

- Identification of System Under Test
- Subsequent coding of relevant variant(s) of System Under Test
- Preparation of error-free starting condition of test sequence by clearing the diagnostic trouble codes
- Reading out measurement values
- Modification of calibration parameters

Retrospection: Diversity of proprietary Diagnostic Solutions

Existing Standards around ECU Diagnostics

Server side implementation of ECU Diagnostics Standards in CalDesk

Client side implementation of ECU Diagnostics Standards in AutomationDesk

ASAM standardized dSPACE Products

3rd Party Products

- - -

proprietary

Client side implementation of ECU Diagnostics Standards in AutomationDesk

AutomationDesk

AutomationDesk

Practical Problems

I. Weak point: Diagnostics Data Bases Content

- Still in practise: proprietary data bases
- ODX complexity, incompatibilities resp. missing semantic clearness
- Migration
- 2. Weak point: Diagnostics Data Bases Availability in time
- 3. Weak point: Automation Interface
 - Still in practise: proprietary APIs, using very different technologies
 - Very complex, very generic MCD-3D API hard to use for ECU test developers
- 4. Weak point: OEM spefic binaries
- 5. Weak point: Know-how hurdle between HIL- and ECU diagnostics area

Solution Approaches

- I. Weak point: Diagnostics Data Bases Content
- → Freeze ODX in its today's version
- → ODX Authoring Guidelines
- → Best practise exchange between OEMs and Tier1
- 2. Weak point: Diagnostics Data Bases Availability in time
- ODX Development to follow the entire software development cycle from specification to prototyping to implementation to test
- 3. Weak point: Automation Interface
- → HIL, i.e test-oriented convenience layer
- → new ASAM HIL-API project (DIAG Port)
- 5. Weak point: Know-how hurdle between HIL- and ECU diagnostics area
- → ASAM HIL API project (DIAG Port)

ASAM HIL API project

Summary and Outlook

- ECU diagnostics is a very complex topic
- HIL technology is essential for ECU diagnostics testing
- ASAM Standards are indispensable for cost-effective test environments
- ASAM Standards are indispensable for ECU development processes
- Interaction of HIL and ECU diagnostics can be optimized
- Very promising new standardization project HIL API will lead to new solutions probably in 2009

Embedded Success

Important Notice

© Copyright 2008, dSPACE GmbH. All rights reserved.

Brand names or product names are trademarks or registered trademarks of their respective companies or organizations.