Development of tribofunctional coatings for automotive applications using thermal spray and combined polymer lacquer techniques

A. Killinger

engineexpo2011

17, 18, 19 MAY 2011 MESSE STUTTGART, GERMANY

DAY 3 THURSDAY 19 MAY

ALTERNATIVE MATERIALS AND GRADES TO IMPROVE POWERTRAIN CHARACTERISTICS

Outline

- Motivation
- Coatings in automotive
- Activities at IFKB
- Combined coatings for dry sliding applications
- Cylinder liner coating via HVOF and HVSFS
- Experimental results
- Conclusion

Universität Stuttgart

Technologie Transfer Initiative

Motivation

Reduction of friction and wear is essential for energy and cost saving

35 Billions EUR loss per anno in Germany due to friction

According to VW: 10% reduce in engine friction means 2g CO₂ saving / km !

Cost saving potentials:

Slide 2

Approaches to reduce friction

Classical approach: Lubrication by oil film

New approach: Coatings with dry lubrication ability

- Very low friction coefficients can be achieved
- No coatings necessary

- No oil or grease
- No encapsulation necessary
- Lacquer based coatings

- Some applications do not allow oil or grease
- Tribosystem needs to be encapsulated
- Oil loss is an environmental problem

- Ę
- Systems still show limited lifetimes
- Elaborate coatings for high performance systems
- Costs

Coatings in automotive (examples)

Application Areas of Functional Polymer and Polymer Composite Coatings in Automotive Engineering

© FUCHS LUBRITECH GMBH DAIMLER AG

- shaped sealing
- plastic components (interior)
- connecting elements in the engine compartment (cylinder head screws ...)
- parts in fuel injection systems
- gasket seals with reduced friction coefficient
- 6 wear protection of sealing
- functional coatings of wheel bolts
- sliding lacquers for exhaust systems
- 9 wear protection of seat adjustment components
- 10 coatings on locking devices for safety belts
- 11 sliding elements for luggage covers
- components for door locking systems
- assembly lubrication / optimized running-in period
- life-time lubrication
- noise minimization

Activities at IFKB University of Stuttgart

Development of combined Hardphase – polymer coatings with dry lubrication ability for industrial applications

Development of cylinder liner coatings using thermal spray methods (HVOF and HVSFS)

Concept of Polymer Hardphase Composite Coatings (type-1)

Herstellung und Charakterisierung von trockenschmierfähigen und verschleißfesten Kombinationsschichten auf Leichtmetallen Dissertation, Universität Stuttgart, 2002

Concept of Polymer Hardphase Composite Coatings (type-2)

Manufacturing Route of Polymer Hardphase Composite Coatings (PHCC)

Manufacturing of Thermally Sprayed Coating Stromyersorgung Plasmagas Pulve cleaning and degreasing surface activation (grid-blasting, etching, ...) coating application via APS or HVOF mechanical post-treatment: grinding, polishing or lapping Kühlwasso APS Atmospheric Plasma Spraving Expansion nozzle Fuel gas Oxyge Contine **Manufacturing of Polymer** Manufacturing of PVD Diamond shockwave Coating Coating cleaning and degreasing cleaning and degreasing air spraying Plasma etching Powder and carrier gas Worknier curing sputtering / vapor deposition **HVOF** High Velocity Oxy Fuel Flame Spraying

Slide 9

Magnetron-Sputtering

Ouelle: Fraunhofer FEP

Allmandring 7 b, Stuttgart, D-70569, Germany, Tel.:+49(0)711 / 685-68301, Fax:+49(0)711 / 685-68299, E-Mail: ifkb@ifkb.uni-stuttgart.de, URL: www.uni-stuttgart.de/ifkb

Paint-Gun

Development of a Tribosystem with Dry Sliding Ability

test samples

dry-sliding system under rolling and sliding load

Twin-Disc-Tester

42 mm

15 mm

1000 N

22 %

Test Conditions:

- Disc-Diameter
- Disc-Width
 - Slip
- Axial Force

Measured Values:

- Life-Time (brake drive)
- Coefficient of Friction µ
- Axial Force

impulse 🚺 für

Basic Structure of the Tribosystem

Model of a Dry Sliding System

Slide 12

PHCC: WC-CoCr / PTFE and WC-CoCr BN Test-Results Combined coating type 1 vs. State-of-the-Art DLC

Summary:

- Composition WC-CoCr / BN reaches high Life-time values
- Composition WC-CoCr / PTFE reaches friction coefficients comparable to DLC
- DLC offers very low friction coefficients

Slide 13

Cylinder liner coatings via High Velocity Flame Spraying

Handling for cylinder liner coating with externally driven HVOF spray torch and rotating engine block.

Concept developed at IFKB.

Coated geometries

- Gray cast iron liner:

- For commercial vehicle inline-6 diesel engine
- 2.1 Liter displacement per cylinder
- 131 mm bore, 260 mm height
- 200 mm coating depth, coated surface: 82.3 cm²

– AlSi9Cu3 test liner:

- For process run-in & tribological testing
- 82.5 mm bore, 125 mm height
- Coated surface: 32.5 cm²

– AlSi9Cu3 engine block:

- Passenger car inline-4 gasoline engine
- 2.0 Liter total displacement
- Integral coated cylinder surface, 32.5cm²
- Weight: 20 kg

HVSFS (High Velocity Suspension Flame Spraying)

- novel approach for direct processing of nanoscaled powder particles
- ✤ i. e. with n-TiO2/TiC in a water-isopropanol suspension
- process temperature: ~ 2,500 3,200 °C
- ✤ particle velocity: ~ 700 1300 m/s

Applied spray materials: Powders (HVOF) and nanooxides (HVSFS)

Durum Nano 3: FeCrMo Fe-based, high alloyed blend powder, gas atomized processed by HVOF Sulzer-Metco Diamalloy 1008: Fe17Cr11Mo gas atomized powder processed by HVOF **Inframat Infralloy S7412:** nanostructured WC/Co 88/12 agglomerated, sintered powder processed by HVOF GTV 80.15.1: Cr₃C₂/Ni20Cr 75/25 agglomerated, sintered powder processed by HVOF TiO₂ Titania based suspension: nanoscale TiO₂/TiC 80/20 water based solvent **IFKB** composition processed by HVSFS Chromia based suspension: nanoscale Cr₂O₃ isopropanol based solvent **IFKB** composition processed by HVSFS

suspension spraying

For

Fe-based

Cylinder liner coating surface characteristics

60

50

40

30

20 10

Rz [um]

Comparison of surface roughness

- net shape, low dimensional tolerances of the coated component
- low surface roughness obtained by HVOF coating technique
- no machining or grinding operations necessary before honing. Minimization of the first honing step

12

10

2

Ra [um]

Rz

Ra

Coating Characterization Honed liner surface with nanostructured coatings

SEM image of honed nano WC/Co surface with WC nano particles and hone grooves

Open porosity after honing: 0,1 %

BSE cross section image of n-TiO₂/TiC coating

Bright spots: TiC; partially reacting with TiO_2 and forming Ti_nO_{2n-1} (Magnéli Phases)

Open porosity after honing: 1,4 %

Coating Characterization

Coating adhesion on AI-alloy and GCI cylinder liners

HVSFS Coatings for Cylinder Liners and Engines

Slide 21

Wear test results: Comparison of wear tests of HVOF, HVSFS and commercial (APS) coatings

- piston ring on cylinder liner segment
- frictional wear occurred during segment test (gray cast iron and commercial APS coating as reference)

Results in first engine tests

Drag Torque Measurement:

- inline-4-cylinder (600 cm³), engine
- WC/Co-coated
- Formula Student race car engine
- Comparison to series production
- Nikasil® coating

Fired/Externally driven Single-Cylinder Test Engine:

- Formula 1 test engine setup
- Comparison to state-of-the-art Nikasil® coating

Coating	friction pressure reduction [bar] fired engine	friction pressure reduction [bar] externally driven engine
Cr ₃ C ₂ /NiCr	0.05	0.05
Мо	0.1	0.02
Mo ₂ C/Mo	0.02 0.09	n/a

significantly reduced frictional losses with all thermal spray coatings

Slide 23

Conclusions

- Combination of ceramic or cermet based TS coatings with polymers has potential for dry sliding application with increased lifetime compared to pure polymer coating
- Evaluation of combined coatings under rolling / sliding conditions show better performance than standard DLC systems
- Cylinder liner coating is performed using HVOF and HVSFS with rotating crankcase
- Thermal spray coatings show beneficial pore structure on surface (oil retention)
- High performance coatings with high wear and corrosion resistance
- ✤ HVOF / HVSFS can be of interest for liners in trucks ⇒ corrosion and wear resistance

Slide 24