

Greenest, meanest and leanest ...

How Ricardo helped McLaren design and develop the world's greenest supercar engine

Rod Beazley

27th October 2011

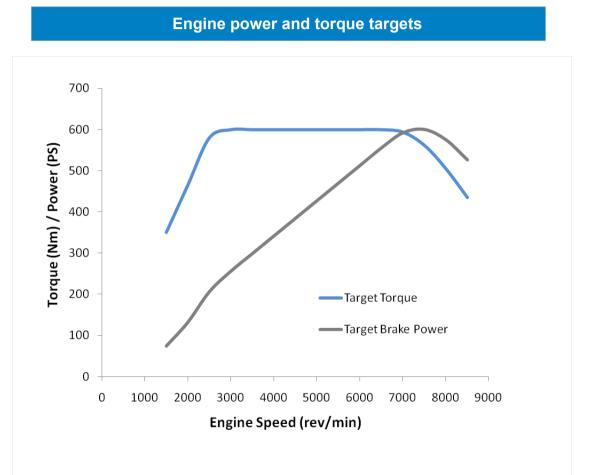
www.ricardo.com

Engine technical presentation contents

- The Brief
 - Philosophy
 - Engine target specification
- Product engineering
 - The engineering challenge
 - Design/analysis
 - Development
 - The achievements

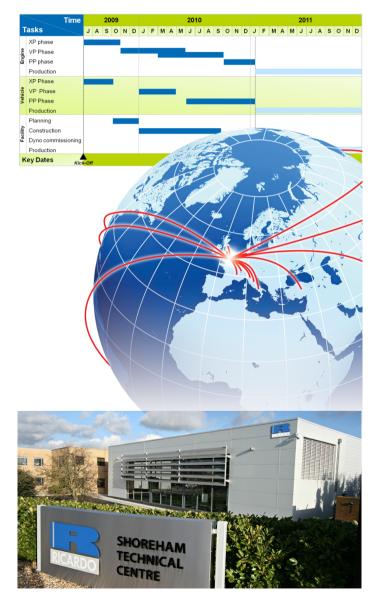
The Brief – Exceptional performance with world class efficiency

- Class-leading vehicle performance through minimum engine weight and low centre of gravity
- Class-leading engine performance achieved through turbo-charging and downsizing
- Class-leading fuel consumption achieved through low friction and turbo-charged downsizing
- Benchmark immediacy of response for a high performance turbocharged engine with instant throttle response and feedback
- A distinctive and inspirational brand defining sound quality that will become recognisable immediately by sophisticated customers



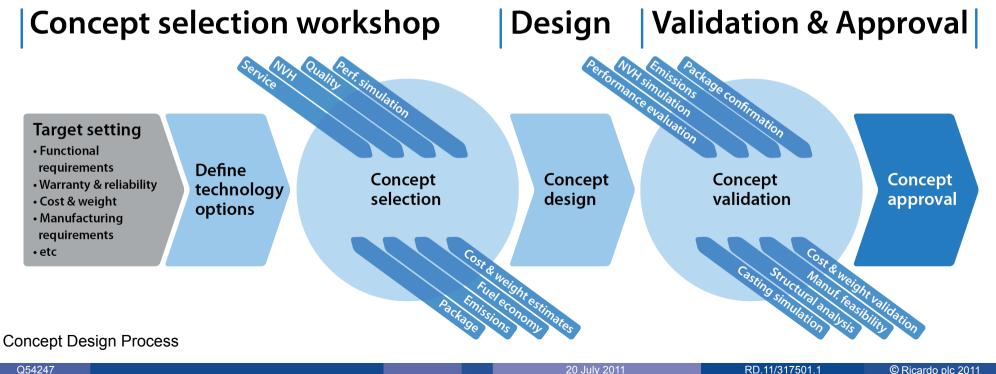
Engine target specification – doing more with less

Attri	bute	Target
Power		600PS @ 7500rpm
Torque		600Nm @ 3000rpm
Mass		<200 kg
CO ₂ (vehicl	e)	<300 g/km
Speed (rpm) 1500	BMEP Bar 2.62	BSFC g/kWhr 352
Transient re (Start: 50% 3000rpm Input: 100%	load	0.5s to 75% desired boost
Max speed		8500rpm
Idle speed		850rpm
Emissions		Eu 5/ ULEV2



The technical challenge was further enhanced by immense time pressure

- 18 months start to SOP
- Engineering program had to integrate with vehicle timing
 - Development and validation program
- Supply chain development
 - Supplier nomination and engagement for prototypes and production


 Establish manufacturing strategy and assembly facility

Product Engineering Concept Design Selection & Validation

- The compressed development timescale and challenging product objectives required rapid selection of appropriate technologies and concepts that would meet project functional and durability targets "out of the box"
- Ricardo achieved this through a combination of:
 - Concept selection and review workshops across UK, US, China and Europe _
 - The extensive use of CAD design and analysis tools _

Ricardo Software products were used extensively throughout the programme to support the design and development process

• WAVE Engine performance and 1D gas dynamics simulation

• VECTIS Automotive CFD software

• VALDYN Valve train and drive system dynamics

• **PISDYN** Piston secondary dynamics and skirt lubrication analysis

• **RINGPAK** Piston ring ringpack dynamic analysis

• ENGDYN Crankshaft/cylinder block coupled

Key engine features, focused on achieving target attributes

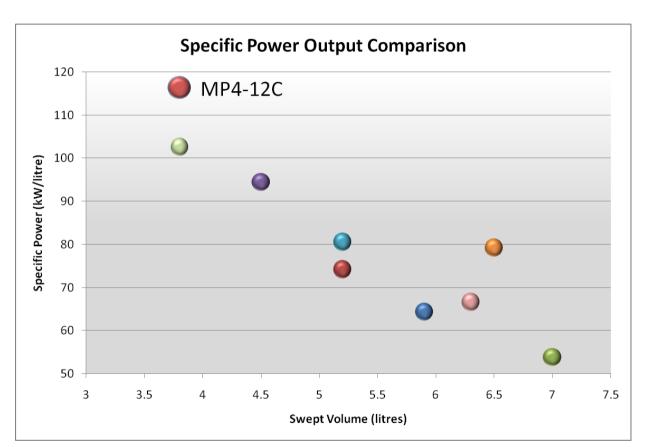
Feature	Function	Benefit	
3.8ℓ V8 bi-turbo	Downsized, high performance engine		
Quad cam phasers	Wide range variation of valve events		
Dry sump	Provide oil handling for extremes of vehicle performance		
3 plate electrical thermostat	Control engine operating temp & provide no flow condition		
Finger follower valvetrain	Operate valves to designed profiles		
ingle beehive valve spring	Control valve closing within designed limits		

8

RD.11/317501.1

Key engine features, focused on achieving target attributes

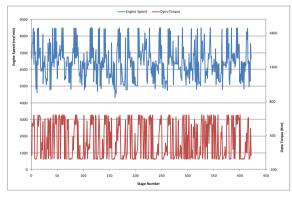
Feature	Function	Benefit
Plastics applied to top of engine assembly	Intake manifold, cam covers and oil filter cooler module	
Aluminium cylinder liners	Nikasil coated aluminium wet liners provide piston running surface	
Piston guided con rod	Axial control of rod carried on small end	
Thick shelled main bearings	Allows all aluminium bearing ladder, no iron inserts	kg
Idle speed	Original target 850 rpm, now 600 rpm	CO2
Integrated sound generator	Controls wave dynamics within the intake system	

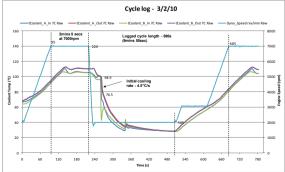


Engine configuration is downsized to provide high specific performance with class leading CO2

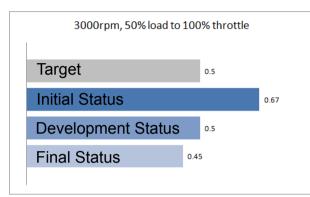
- V8 bi-turbo
- 3.82 @ 600PS (N/A would need to be 5.0 to 5.5 L)
 - Reduced friction compared to larger N/A engine
 - Reduced pumping work compared to larger N/A engine
 - Lower mass than larger N/ A engine

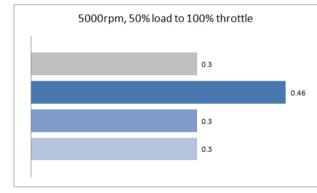


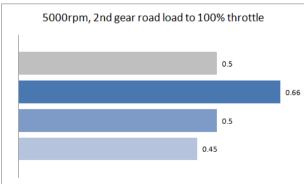

Development activity was concentrated and intensive, involving component rigs, engine dyno, and vehicle based testing, allied to Ricardo CAE techniques


	7 beds running in parallel	All beds ran shift systems to maximise results generation
Engine dyno Testing	> 5000 hrs testing	Testing included functional testing (performance, emissions and mechanical development), NVH, and durability (cycles included thermal shock, high speed, Nordschleife, manifold cracking, piston scuff and critical vibrations)
	> 3000 laps of simulated Nordschleife	Equivalent of > 73,000 km track mileage, cycle based on real data logged during vehicle track testing at Nordschleife
Component and system level rig tests	Combined test plan including Ricardo, McLaren and suppliers	All major systems and components completed rig tests during development and validation phases, including exhaust and intake systems, pumps, drives, cranks, rods, and cylinder block
Vehicle testing	> 1,000,000 km	Mixture of road and track including Nardo, Idiada and Nordschleife for functional performance and durability development and validation Climatic and in territory trips

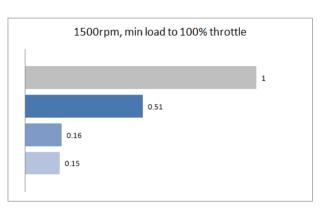
Nordschleife Cycle Simulation

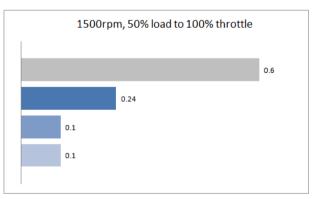



Thermal shock Cycle

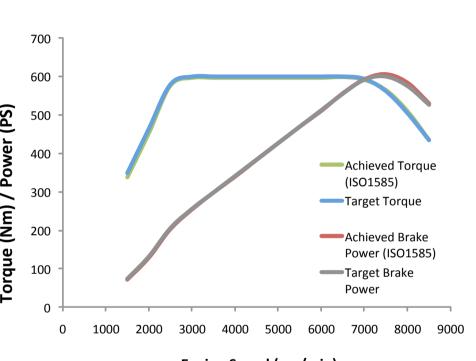


RD.11/317501.1


Engine transient response was developed against a set of measurable targets. Successful performance relies on complex interactions of hardware, control and calibration



- Transient test is based on time taken to achieve 75% of max boost from a given condition
- Targets were achieved as a maturation over time
- Influencers included
 - Compressor and turbine configurations
 - Exhaust manifold geometry
 - Cam phaser response
 - Calibration variables traded off to provide best compromise between competing factors



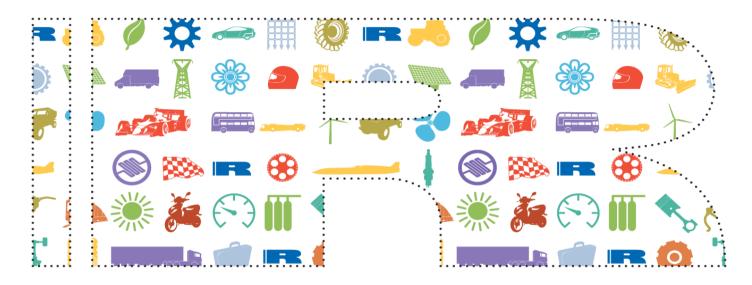
Engine Achievements

Attribute	Target	Achieved
Power	600PS @ 7500	600PS @ 7500
Torque	600Nm @ 3000	600Nm @ 3000
Mass	200 kg	199 kg
CO2	<300 g/km	279 g/km
Speed BMEP 1500rpm 2.62Bar	BSFC g/kWhr 352	BSFC g/kWhr 346
Transient response (Start: 50% load 3000rpm Input: 100% throttle	0.5s to 75% desired boost	0.45s to 75% desired boost
Max speed (rpm)	8500	8500
Idle speed (rpm)	850	600
Emissions	Eu 5 / ULEV2	Eu 5 / ULEV2

Engine power and torque targets

Engine Speed (rev/min)

The Achievements Optimised engine integration enables the vehicle to achieve 279g/km


• Best in class CO₂ emissions (CO₂/kW)

RD.11/317501.1

Rod Beazley

Rod.beazley@ricardo.com

Delivering Value Through Innovation & technology