Role of Hybrid Simulation in Vehicle Development diego minen

Simulation performance rate

Model complexity

Vehicle simulation 2011...

Vehicle simulation 2012

VIgrade

Vehicle simulation And beyond...

Vehicle Development Physical Prototypes

- Essence of <u>Product</u> Innovation
- Need product construction
- Can be tested by humans
- but...
 - Cannot be modified easily

Vehicle Development Virtual Prototypes

- Essence of <u>Design</u> Innovation
- Need digital model construction
- Can be modified easily
- but...
 - Cannot be tested by humans

Vehicle Development Hybrid Prototypes

- Engineering Revolution
- Use the virtual prototype same digital model
- Can be modified easily
- and...

Can be tested by humans

Vehicle Development END Traditional Process Driver's **Physical Testing** Loop ment **ADAMS** 11 ime **VI-CarRealTime** Concept **CAE** Loop VI grade

Vehicle Development VI-DriveSim Development Process

Vehicle Development Real-time Hybrid Simulation

- Off-line: on computer
 On line: on V/I Drive Sin
 - **On-line:** on VI-DriveSim
 - share the same model
 - mutually <u>validate</u> and <u>complement</u> each other

VI-DriveSim Vehicle Model

- Vehicle Sprung Mass
 - Rigid or compliant body
 - Independent/Dependent Front/Rear Suspension
 - Suspension Installation Stiffness
 - Steering
 - Brakes
 - Powertrain, Gearbox, Differentials
 - Tires (Pacejika Formulas)
 - Full aerodynamic Forces
 - User Sensors

VI-DriveSim Graphic Environment

- Features
 - 3D Track models (based on LiDaR and other methods)
 - Skid marks and smoke effects
 - Light conditions based on location, date and time of the day
 - Modeling of surroundings around the track
 - Rain, snow and fog effects
 - Handling of hundreds of lights (for night races)
 - Accurate vehicle modeling and shading
 - Widgets for speed, gear, RPM, G-G diagram
 - Real-time reflections on car
 - Real-time mirrors
 - Real-time shadows

VI-DriveSim

Human Interface

- Electric Motor (220/380 voltage supply)
- Receives data from VI-CarRealTime
- CANBUS Interface
- Programmable PLC interface
- Analog signal for throttle and brake pedals converted to CANBUS
- Analog signal for gear shifting (converted to USB)
- No clutch (neutral gear available)

VI-DriveSim Motion Platform

- VI-DriveSim runs on any motion platform
- The new Ansible Motion platform, couples motions similarly to a real car:
 - X,Y and Yaw degrees of freedom are decoupled
 - Roll, Pitch, Heave are coupled

VI-DriveSim Dynamic Simulator

Driving Simulator Correlation Factors

- In order of importance for perception:
 - 1. Visual
 - 2. Vehicle Physics
 - **3. Steering Torque Feedback**
 - 4. Acustics
 - 5. Pedal Feedbacks
 - 6. Motion Cueing

Driving Simulator Correlation Factors

- In order of R&D for perception:
 - **1. Motion Cueing**
 - 2. Acustics
 - **3. Steering Torque Feedback**
 - 4. Pedal Feedbacks
 - 5. Vehicle Physics
 - 6. Visual

Perception

Virtual-Real Correlation

- A good Driving Simulator:
 - Activates driver's automatic • reaction
 - Easily allows to compare the virtual experience with the real
 - Does not overload driver's brain

VI grade

E. Semantic Memory Pathway

Virtual-Real Correlation

- Virtual and real worlds are **correlated** but **not identical**
- Hybrid Simulation leads to a completely new engineering process

Classical Motion Cueing

Scheme of the Classical Motion Cueing algorithm

Main drawbacks

- $\bullet\,$ No possibility of including constraints \Longrightarrow conservative design
- WFs often introduce accelerations "inversion"

Model Base Prediction for Motion Cueing

Model Base Prediction for Motion Cueing

- The reference signal is well tracked within the platform limits
- No "inversion" can be perceived

Which Size Simulator?

- Big vs. Small Workspace
- car model \rightarrow sport productive car
- track \rightarrow 5km hilly proving ground
- virtual driver (perf std-dev = 0)
- Laptime = 150s

Big simulator

Small simulator

Enhancing Motion Cueing using mFrontier

Which Size Simulator?

- Multi-Objective plots as function of f1, f2, f3 weight pars:
 - SF=scaling factor of real peak accelerations (X,Y) vs. virtual
 - POS: total platform workspace usage

Which Size Simulator?

VI-DriveSim Teamwork

- We provide a turnkey solution:
 - Industry Validated real-time model
 - High Performance Real Time Computing
 - Quality Graphics and Sound
 - Professional Vehicle Engineering
 - R&D Motion Cueing Algorithms
 - Desk-Side Motion Platform

ansiblemotion

VI-grade Technology Q&A

